1. pH Stimulated DNA Hydrogels Exhibiting Shape Memory Properties
    Guo, W.W., Lu, C.H., Orbach, R., Wang, F., Qi, X.J., Cecconello, A., Seliktar, D., Willner, I.
    Advanced Materials, 27(1):73-8, 2015.
  2. Injectable PEGylated Fibrinogen Cell-Laden Microparticles Made with a Continuous Solvent- and Oil-Free Preparation Method
    Oliveira, M.B., Kossover, O., Mano, J.F., Seliktar, D.
    Acta Biomaterialia, 13:78-87, 2015.
  3. Protein Composition Alters In Vivo Resorption Properties of Semi-Synthetic PEG-based Hydrogels as Monitored by Contrast-Enhanced MRI
    Berdichevski, A., Shachaf, Y., Wechsler, R., Seliktar, D.
    Biomaterials, 42:1-10, 2015.
  4. In-Situ Architectures Designed in 3D Cell-Laden Hydrogels using Microscopic Laser Photolithography
    Mironi-Harpaz, I., Hazanov, L., Engel, G., Yelin, D., Seliktar, D.
    Advanced Materials, 27(11):1933-8, 2015.
  5. Modulation of Huh 7.5 Spheroid Formation and Functionality using Modified PEG-based Hydrogels of Different Stiffness
    Lee, B.H., Kim, M.H., Lee, J.H., Seliktar, D., Cho, N.J., Tan, L.P.
    PLOS ONE, 10(2):e0118123, 2015.
  6. In Vivo Generation of a Supernumerary Functional Skeletal Muscle
    Fuoco, C., Biondo, A., Longa, E., Mascaro, A., Shapira-Schweitzer, K., Benedetti, S., Salvatori, M.L., Sabrina, S., Bernardini, S., Stefano, C., Roberto, B., Seliktar, D., Cossu, G., Gargioli, C.
    EMBO Molecular Medicine, 7(4):411-22, 2015.
  7. The effect of matrix stiffness on nucleus pulposus stem cells
    Navaro, Y., Bleich-Kimelman, N., Hazanov, L., Mironi-Harpaz, I., Shachaf, Y., Garty, S., smith, Y., Pelled, G., Gazit, Z., Seliktar, D., Gazit, D.
    Biomaterials, 49:68-76, 2015.
  8. Xu, R., Taskin, M.B., Rubert, M., Seliktar, D., Besenbacher, F., Chen, M., “hiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold”, Scientific Reports, 5:8480, 2015.
  9. Differentiation of dental pulp stem cells in 3-D biosynthetic hydrogel system Qiqi, L., Mirali, P., Rufaihah, A.J., Vinicius, R., Huei, J.T., Seliktar, D., Wei, S.T. Stem Cell International, Vol. 2015, ID: 525367, 9 pages.
  10. Using Bimodal MRI/Fluorescence Imaging to Identify Host Angiogenic Response to Implant Geometry Berdichevski, A., Yameen, H.S., Dafni, H., Neeman, M., Seliktar, D.
    Proceedings of the National Academy of Sciences, 112(16):5147-52, 2015.
  1. The effect of Matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack
    Plotkin, M., Vaibavi, S.R., Rufaihah, A.J., Venkateswaran, N., Wang, J., Shachaf, Y., Kofidis, T., Seliktar, D.
    Biomaterials, 35(5):1429-38, 2014.
  2. Influence of soluble PEG-OH incorporation in a 3-D cell-laden PEG-fibrinogen (PF) hydrogel on smooth muscle cell morphology and growth
    Lee, B.H., Tin, SP., Chaw, SY., Cao, Y., Xia, Y., Steele, TW., Seliktar, D., Bianco-Peled, H., Venkatraman, S.S.
    Journal of Biomaterials Science, Polymer Edition, 25(4):394-409, 2014.
  3. A novel method for hydrogel nanostructuring
    Yom-Tov, O., Frisman, I., Seliktar, D., Bianco-Peled, H.
    European Polymer Journal, 52:137-45, 2014.
  4. PlGF–MMP9-engineered cardiomyocyte-derived iPS cells supported by PEG–fibrinogen hydrogel possess an enhanced capacity to repair the damaged myocardium
    Bearzi, C., Gargioli, C., Baci, D., Fortunato, O., Shapira-Schweitzer, K., Kossover, O., Latronico, M.L., Seliktar, D., Condorelli, G., Rizzi, R.
    Cell Death and Disease, 5:e1053, 2014.
  5. Cell Morphology in Injectable Nanostructured Biosynthetic Hydrogels
    Yom-Tov, O., Seliktar, D., Bianco-Peled, H.
    Journal of Biomedical Materials Research A, 102(12):4371-9, 2014.
  6. Reversible Ag+ Crosslinked DNA Hydrogels
    Guo, W.W., Qi, X.J., Orbach, R., Lu, C.H., Freage, L., Mironi-Harpaz, I., Seliktar, , Yang, H.H., Willner, I.
    Chemical Communications, 50(31):4065-8, 2014.
  7. 3D Hydrogel Environment Rejuvenates Aged Pericytes for Skeletal Muscle Tissue Engineering
    Fuoco, C., Sangalli, E., Vono, R., Testa, S., Sacchetti, B., Latronico, M.V.G., Bernardini, S., Madeddu, P., Cesareni, G., Seliktar, D., Rizzi, R., Bearzi, C., Cannata, S.M., Spinetti, G., and Gargioli, C.
    Frontiers in Physiology, 5:203, 2014.
  8. Bioinspired Functional Nanostructures Based on DOPA-DOPA Peptide Motif Fichman, G., Adler-Abramovich, L., Manohar, S., Mironi-Harpaz, I., Guterman, T., Seliktar, D., Messersmith, P.B., Gazit, E.
    ACS Nano, 8(7):7220-8, 2014.
  9. A Novel Design of Injectable Porous Hydrogels with in situ Pore Formation Yom-Tov, O., Yosef, L., Seliktar, D., Bianco-Peled, H.
    Acta Biomaterialia, 10(10):4236-46, 2014.
  10. Cellularized Biosynthetic Microhydrogel Polymers for Intravascular Liver Tissue Regeneration Therapy
    Saadi, T., Nayshool, N., Carmel, J., Arish, A., Bramnik, Z., Mironi-Harpaz, I., Seliktar, D., Baruch, Y.
    Tissue Engineering A, 20(21-22):2850-9, 2014.
  11. Fibrin-based Hydrogel Scaffold for Controlling Cell-Matrix Interaction in Vascular Tissue Engineering
    Mironi-Harpaz, I., Zigerson, S., Seliktar, D.
    Advanced Biomaterials and Devices in Medicine, 1(1): 28-37, 2014.
  12. Fabrication of PEGylated Fibrinogen – A Versatile Injectable Hydrogel Biomaterial in Cardiac Tissue Engineering: Methods and Protocols
    Miron-Harpaz, I., Berdichevski, A., Seliktar, D.
    (eds M. Radisic and L. Black), Springer, vol. 1181, PP 61-68, 2014.
  1. Low-Dose BMP-2 Treatment for Bone Repair using a PEGylated Fibrinogen Hydrogel
    Ben-David, D., Srouji, S., Shapira-Schweitzer, K., Kossover, O., Ivanir, E., Kuhn, G., Muller, R., Seliktar, D., Livne, E.
    Biomaterials, 34(12):2902-10, 2013
  2. Capillary morphologenesis in PEG-collagen hydrogels
    Singh, R.K., Seliktar, D., Putnam, A.J.
    Biomaterials, 34(37):9331-40, 2013
  3. Switchable Catalytic Acrylamide Hydrogels Crosslinked by Hemin/G-Quadruplexes
    Lu, C.H., Qi, X.J., Orbach, R., Yang, H.H., Mironi-Harpaz, I., Seliktar, D., Willner, I.
    Nano Letters, 13(3):1298-302, 2013
  4. Fluorescent DNA Hydrogels Composed of Nucleic Acid-Stabilized Silver Nanoclusters
    Guo, W.W., Orbach, R., Mironi-Harpaz, I., Seliktar, D., Willner, I.
    Small, 9(22):3748-52, 2013
  5. Time-Dependent Matrix Modulus and Cellular Response in Three-Dimensional Hydrogel Cultures
    Kesselman, D., Kossover, O., Mironi-Harpaz, I., Seliktar, D.
    Acta Biomaterialia, 9(8):7630-39, 2013
  6. Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model
    Rufaihah, A.J., Vaibavi, S.R., Plotkin, M., Jiayi, S., Nithya, V., Wang, J., Seliktar, D., Kofidis, T.
    Biomaterials, 34(33):8195-202, 2013
  7. Attempted application of bioengineered/biosynthetic supporting matrices with phosphatidylinositol-trisphosphate-enhancing substances to organ culture of human primordial follicles
    Lerer-Serfaty, G., Samara, N., Fisch, B., Shachar, M., Kossover, O., Seliktar, D., Ben-Haroush, A., Abir, R.
    Journal of Assisted Reproduction and Genetics, 30(10):1279-88, 2013
  8. Bioprinting and Tissue Engineering: Recent Advances and Future Perspectives
    Seliktar, D., Dikovsky D., Napadensky E.
    Israeli Journal of Chemistry, 53 (9-10):795-804, 2013
  9. Heart Regeneration: the Bioengineering Approach in Regenerative Medicine Technology as Applied to Organ Transplantation
    Seliktar, D., Berdichevski, A., Miron-Harpaz, I., Shapira-Schweitzer, K. (ed G. Orlando)
    Elsevier, New York, PP. 445-455, 2013
  10. Designing Cell-Compatible Hydrogels for Biomedical Applications
    Seliktar, D.,
    Science, 336 (6085):1124-28, 2012 Click here to read “Designing Cell-Compatible Hydrogels for Biomedical Applications” article >>
  11. Biomimetic Hydrogels for Regenerative Medicine.
    Miron-Harpaz, I., Kossover, O., Ivanir, E., Seliktar, D.
    eds. J.F. Mano, Wiley-VCH: John Wiley & Sons, 2012
  12. Biomimetics of the extracellular matrix: an integrated three-dimensional fiber- hydrogel composite for cartilage tissue engineering
    Coburn, J., Gibson, M., Bandalini, P.A., Laird, C., Mao, H.Q., Moroni, L., Seliktar, D., Elisseeff, J.
    Smart Structures and Systems, 7(3): 213-222, 2011
  13. Regenerative medicine as applied to general surgery
    Orlando, G., Wood, J.K., Baptista, P., Binder, K.W., Bitar, K.N., Breuer, C., Burnett, L., Christ, G., DeCoppi, P., Farney, A., Figliuzzi, M., Holmes, J., Koch, K., Macchiarini, P., Sani1, S.H.M., Opara1, E., Remuzzi, A., Rogers, J., Saul, J., Seliktar, D., Shapira-Schweitzer, K., Smith, T., Solomon, D., Van Dyke, M., Yoo, J., Zhan, Y., Atala, A., Stratta, R.J., Soker, S.
    Annals of Surgery, 255(5):867-880, 2012
  14. Nanostructuring Biosynthetic Hydrogels for Tissue Engineering: A Cellular and Structural Analysis
    Frisman, I., Seliktar, D., Bianco-Peled, H.
    Acta Biomaterialia, 8(1):51-60, 2012
  15. Photopolymerization of Cell-Encapsulating Hydrogels: Crosslinking Efficiency Versus Cytotoxicity
    Mironi-Harpaz, I., Wang, D.Y., Venkatraman, S., Seliktar, D.
    Acta Biomaterialia, 8(5):1838-48, 2012
  16. Unique Properties of Fmoc based peptide hydrogels and implications for the role of aromatic interactions in their self-assembly
    Orbach, R., Mironi-Harpaz, I., Adler-Abramovich, L., Mossou, E., Forsyth, V.T., Gazit, E., Seliktar, D.
    Langmuir, 28(4):2015-22, 2012
  17. Cardiac Restoration Therapy
    Seliktar, D., Shapira-Schweitzer, K.
    Biomaterials and Devices for the Circulatory System, eds. T. Gourlay and R. Black, Wood Head Publishing, In press
    D Seliktar, L Almany
    EP Patent 1,722,834, 2012
  19. Injectable polyethylene glycol-fibrinogen hydrogel adjuvant improves survival and differentiation of transplanted mesoangioblasts in acute and chronic skeletal-muscle degeneration
    Fuoco,C., Salvatori, M.L., Biondo, A., Shapira-Schweitzer, K., Santoleri, S., Antonini, S., Bernardini, S., Tedesco, F. S., Cannata, S., Seliktar, D., Cossu, G., Gargioli, C.
    Skeletal muscle 2 (1), 1-14, 2012
  20. Ex vivo Dynamic Loading Enhances the Osteogenic Differentiation of Genetically Engineered Mesenchymal Stem Cells
    Kimelman-Bleich, N., Kallai, I., Seliktar, D., Helm, G.A., Gazit, Z., Gazit, D., Pelled, G.
    Journal of Tissue Engineering and Regenerative Medicine, 5(5):384-93, 2011
  21. Polymer-Conjugated Albumin and Fibrinogen Composite Hydrogels as Cell Scaffolds designed with Affinity-Based Drug Delivery
    Oss-Ronen, L., Seliktar, D.
    Acta Biomaterialia, 7(1):163-170, 2011
  22. A Finite Element Model of Cell-Matrix Interactions to Study the Differential Effect of Scaffold Composition on Chondrogenic Response to Mechanical Stimulation
    Appelman, T., Mizrahi, J., Seliktar, D.
    Journal of Biomechanical Engineering, 133(4), 2011
  23. Tissue Engineered Scaffold Alterations Affects the Biochemical Response of Chondrocytes to Dynamic Mechanical Stimulation
    Appelman, T., Mizrahi, J., Elisseeff, J., Seliktar, D.
    Biomaterials, 32(6): 1508-1516, 2011
  24. Stimulus-Responsive Biosynthetic Fibrinogen Conjugates for Tissue Engineering: Structural Characterization
    Frisman, I., Shachaf, Y., Seliktar, D., Bianco-Peled, H.
    Langmuir, 27(11):6977-86, 2011
  25. Biological and Mechanical Implications of PEGylating Proteins into Hydrogel Biomaterials
    Gonen-Wadmany, M., Goldshmid, R., Seliktar, D.
    Biomaterials, 32(26):6025-33, 2011
  26. A Combined Cell Therapy and In Situ Tissue Engineering Approach for Myocardial Repair
    Habib, M., Shapira-Schweitzer, K., Caspi, O., Gepstein, A., Arbel, G., Aronson, D., Seliktar, D.
    Gepstein, L.Biomaterials, 32(30):7514-23, 2011
  27. Nanostructuring PEG-Fibrinogen Hydrogels to Control Cellular Morphogenesis
    Frisman, I., Seliktar, D., Bianco-Peled, H.
    Biomaterials, 32(31):7839-46, 2011
  28. Regenerative medicine as applied to solid organ transplantation: current status and future challenges
    Orlando, G., Baptista, P., Birchall, M., De Coppi, P., Farney, A., Guimaraes-Souza, N.K., Opara, E., Rogers, J., Seliktar, D., Shapira-Schweitzer, K., Stratta, R.J., Atala, A., Wood, K.J., and Soker, S.
    Transplantation International, 24(3):223-32, 2011
  29. The Biocompatability of PluronicF127 Fibrinogen-based Hydrogels
    Shachaf, Y., Gonen-Wadmany, M., Seliktar, D.
    Biomaterials, 31(10):2836-47, 2010
  30. Nanostructuring of PEG-Fibrinogen Polymeric Scaffolds
    Frisman, I., Seliktar, D., Bianco-Peled, H.
    Acta Biomaterialia, 6(7): 2518-2524, 2010
  31. Structural investigation of PEG-fibrinogen conjugates
    Frisman, I., Seliktar, D., Bianco-Peled, H.
    Journal of Materials Science: Materials in Medicine, 21(1): 73-80, 2010
  32. Photopolymerizable Hydrogels Made from Polymer-Conjugated Albumin for Affinity-Based Drug Delivery
    Oss-Ronen, L., Seliktar, D.
    Advanced Engineering Materials, 12(1-2):B45-B52, 2010
  33. Investigating the molecular structure and physical properties of PEG-Fibrinogen hydrogels
    Dikovsky, D., Bianco-Peled, H., and Seliktar, D.
    Advanced Engineering Materials, 12(6): B200-B209, 2010
  34. The Role of Matrix Metalloproteinases in Regulating Neuronal and Nonneuronal Cell Invasion into PEGylated Fibrinogen Hydrogels
    Sarig-Nadir, O., Seliktar, D.
    Biomaterials, 31(25): 6411-6416, 2010
  35. Laser Engraving of Guidance Microchannels into Hydrogels Directs Cell Growth in 3-D
    Sarig-Nadir, O., Livnat, N., Zajdman, R., Shoham, S., Seliktar, D.
    Biophysical Journal, 3;96(11):4743-52, 2009
  36. An Injectable Hydrogel for 3-D Culture of Human Embryonic Stem Cell-Derived Cardiomyocytes and Rat Neonatal Cardiac Cells
    Shapira-Schweitzer, K., Habib, M., Gepstein, L., Seliktar, D.
    Journal of Molecular and Cellular Cardiology, 46(2):213-24, 2009
  37. The differential effect of scaffold composition and architecture on chondrocytes response to mechanical stimulation
    Appelman, T., Mizrahi, J., Elisseeff, J., Seliktar, D.
    Biomaterials, 30(4): 518–525, 2009
  38. Real-Time Force Measurement in PEG-based Tissue Engineered Cartilage
    Preiss-Bloom, O., Mizrahi, J., Elisseeff, J., Seliktar, D.
    Artificial Organs, 33(4):318-27, 2009 Click here to read “Real-time Monitoring of Force Response Measured in Mechanically Stimulated Tissue-Engineered Cartilage” article >>
  39. Phloroglucinol-based Biomemtic adhesives for medical applications
    Bitton, R., Josef, E., Shimshelashvili, I., Shapira-Schweitzer, K., Seliktar, D., Bianco-Peled, H.
    Acta Biomaterialia, 5(5):1582-7, 2009
  40. Microscale Control of Stiffness in Cell-Adhesive Substrate Using Microfluidics-Based Lithography
    Cheung, Y.K., Azeloglu, E.U., Costa, K.D., Seliktar, D., Sia, S.K.
    Angewandte Chemie, 48(39):7188-92, 2009
  41. Self-Assembled Fmoc-Peptides as a Platform for the Formation of Nanostructures and Hydrogels
    Orbach, R., Adler-Abramovich, L., Zigerson, S., Mironi-Harpaz, I., Seliktar, D., Gazit, E.
    Biomacromolecules, 10(9):2646-51, 2009
  42. In Vitro Evaluation of a Composite Scaffold Made from Electrospun Nanofibers and a Hydrogel for Vascular Tissue Engineering
    Feingold, D., Zussman, E., Seliktar, D.
    Journal of Bionanoscience, 3, 45–57, 2009
  43. Compositional Alterations of Fibrin-Based Materials for Regulating In Vitro Neural Outgrowth
    Sarig-Nadir, O., Seliktar, D.
    Tissue Engineering Part A, 14(3):401-11, 2008, (Featured on the Cover)
  44. Defining the Role of Matrix Compliance and Proteolysis in Three-Dimensional Cell Spreading and Remodeling
    Dikovsky, D., Bianco-Peled, H., and Seliktar, D.
    Biophysical Journal, 94(7):2914-25, 2008
  45. The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system
    Peyton, S.R., Kim, P.D., Ghajar, C.M., Seliktar, D., Putnam, A.J.
    Biomaterials, 29(17):2597-607, 2008
  46. Hydrogels for Cardiac Tissue Regeneration
    Shapira-Schweitzer, K., Dikovsky, D., Habib, M., Gepstein, L., Seliktar, D.
    Bio-Medical Materials and Engineering, 18(4-5):309-14, 2008
  47. A Novel Poly(ethylene glycol)-Fibrinogen Hydrogel for Tibial Segmental Defect Repair in a Rat Model
    Peled, E., Boss, JH., Zinman, C., Bejar, J., Seliktar, D.
    J Biomed Mater Res A, 80A(4):874-884, 2007
  48. Matrix Stiffness Affects Spontaneous Contraction of Cardiomyocytes Cultured within a PEGylated Fibrinogen Biomaterial
    Shapira, K., and Seliktar, D.
    Acta Biomaterialia, 3(1): 33-41, 2007
  49. Protein-Polymer Conjugates for Forming Photopolymerizable Biomimetic Hydrogels for Tissue Engineering
    Gonen-Wadmany, M., Oss-Ronen, L., Seliktar, D.
    Biomaterials, 28(26): 3876-86, 2007
  50. Ultrasound-Induced Angiogenic Response in Endothelial Cells
    Mizrahi, N., Seliktar, D., Kimmel, E.
    Ultrasound in Medicine and Biology, 33(11):1818-29, 2007
  51. Differential Response of Adult and Embryonic Mesenchymal Progenitor Cells to Mechanical Compression in Hydrogels
    Terraciano, V., Hwang, N., Moroni, L., Park, H.B., Zhang, Z., Mizrahi, J., Seliktar, D., Elisseeff, J.
    Stem Cell, 25(11):2730-2738, 2007
  52. Structural Alterations of PEG-Fibrinogen Hydrogel Scaffold Augments 3-D Cellular Morphology and Cellular Migration
    Dikovsky, D., Bianco-Peled, H., Seliktar, D.
    Biomaterials, 27(8):1496-506, 2006
  53. Immobilized Fibrinogen in PEG Hydrogels does not Improve Chondrocyte-Mediated Matrix Deposition in Response to Mechanical Stimulation
    Schmidt, O., Mizrahi, J., Elisseeff, J., Seliktar, D.
    Biotechnol Bioeng, 95(6):1061-9, 2006
  54. Bio-Synthetic Hydrogel Scaffolds made from Fibrinogen and Polyethylene Glycol for 3-D Cell Cultures
    Almany, L., and Seliktar, D.
    Biomaterials, May,26(15):2467-77,2005
  55. In Vivo Degradation Properties of Semi-Rigid Polymeric Films Made of Alginate and Polyethylene Glycol
    Livnat, M., Peled, E., Boss, J., and Seliktar, D.
    Israeli Journal of Chemistry, 45, 421–427, 2005
  56. Extracellular Stimulation in Tissue Engineering
    Seliktar, D.
    Ann. N.Y. Acad. Sci. 1047: 386-394, 2005
  57. Endoluminal Hydrogel Films Made of Alginate and Polyethylene Glycol: Physical Characteristics and Drug-Eluting Properties
    Livnat, M., Beyar, R., and Seliktar, D.
    J Biomed Mater Res A, 75A: 710–722, 2005
  58. MMP-2 sensitive, VEGF-bearing Bioactive Hydrogels for Promotion of Vascular Healing
    Seliktar, D., Zisch, A., Lutolf, M., Wrana, J.L., Hubbell, J.A.
    J Biomed Mater Res A, 68A(4): 704-716, 2004
  59. Controlling the Cellular Organization of Tissue Engineered Cardiac Constructs
    Gonen-Wadmany, M., Gepstein, L., Seliktar, D.
    Annal N Y Acad Sci, 1015:299-311, 2004
  60. Mechanical Strain-Stimulated Remodeling of Tissue-Engineered Blood Vessel Constructs
    Seliktar, D., Nerem, R.M., Galis, Z.G
    Tissue Engineering, 9(4): 657-666, 2003
  61. The Response of Endothelial Cells to Fluid Shear Stress Using a Co-Culture Model of the Arterial Wall
    Imberti, B., Seliktar, D., Remuzzi, A., Nerem, R.M.
    Endothelium, 9(1): 1-10, 2002
  62. Methods for Tissue Engineering A Blood Vessel Substitute
    Seliktar, D. and R.M. Nerem
    Methods of Tissue Engineering, eds. A. Atala and R. Lanza, Academic Press, pp. 891-903, 2002
  63. Vascular Tissue Engineering
    Nerem, R.M. and Seliktar, D.
    Annual Reviews of Biomedical Engineering, 3:225-243, 2001
  64. The Role of Matrix Metaloproteinase-2 in the Remodeling of Cell-Seeded Vascular Constructs Subjected to Cyclic Strain
    Seliktar, D., Nerem, R.M., Galis, Z.G.
    Annals of Biomedical Engineering, 29(12): 1-12, 2001
  65. Tissue Engineering and the Cardiovascular System
    Nerem, R.M., Braddon, L.G., and Seliktar, D.
    Frontiers in Tissue Engineering, eds. C.W. Patrick, Jr., A.G. Mikos, and L.V. McIntire, Elsevier Science, New York, PP. 561-579, 1998.
  66. Tissue Engineering and the Vascular System
    Nerem, R.M., Braddon, L.G., Seliktar, D., and Ziegler, T.
    Synthetic Biodegradable Polymer Scaffolds, eds. A. Atala, D. Mooney, J.P. Vacanti, and R. Langer, Birkhauser, Cambridge, pp. 165-185, 1997.
  67. Dynamic Mechanical Conditioning of Collagen Gel Blood Vessel Constructs Induces Remodeling In Vitro
    Seliktar, D., Black, R.A., Vito, R.P., and Nerem, R.M.
    Annals of Biomedical Engineering, 28(4): 351—62, 2000, (Featured on the Cover)